

LT-typeC

Flexnetwork アナログユニット (アナログ入力/出力)

アナログユニットを使ってアナログ入力/出力する。

Flexnetworkにアナログユニットを接続して、アナログ入力/出力します。 LTはTypeB/B+とTypeCがFlexnetworkに対応しています。

FN-AD04AH11は、アナログ値をデジタル値に変換して入力します。 FN-DA04AH11は、デジタル値をアナログ値に変換して出力します。

◆入力部回路図

アナログユニットを使用するにあたり、最初にハードウェアの設定を行います。

1.まず最初にFlexnet workケーブルを使用して、LTとユニットを接続します。 また、電源などの配線を行います。

◆出力部回路図

- 2 -

アナログユニットを使用するにあたり、最初にハードウェアの設定を行います。

2. 各種SWのうち、ステーション番号(S-no)の設定をします。

DipS Wのうち左2つは、デフォルトでは上上となっています。

(出力ノンホールド、通信速度6M)

DipSWのうち右2つと、ロータリースイッチでS-noの設定をします。

DipSWは、右から32、16という数値が付加されます。

例: DipSW 上(32) 下(0) ロータリースイッチ(1) = S-noは33

重要 アナログユニットは4局占有となります。

例: S-noを「1」と設定するとき、1~4までの4局を占有します。

そのため、次にユニットをつける場合は注意が必要です。

- 3 -

アナログユニットを使用するにあたり、最初にハードウェアの設定を行います。

3.終端抵抗の設定をします。

4. 各チャンネルごとにレンジ(範囲)の設定をします。

レンジSW設定	レンジ
0	0∼5V %1
1	1~5V
2	0~10V
3	-5~5V
4	-10~10V
5	0~20mA
6	4~20mA
7~F	ノーオペレーション

※1:出荷時は「0(0~5V)」に設定されています。

<mark>重要</mark> レンジSWは必ず0~6に 設定してください。 7~Fに設定すると、PWR とCALのLEDが点滅動作 をします。

アナログユニットを使用するにあたり、最初にハードウェアの設定を行います。

5.キャリブレーションの設定をします。

上記キャリブレーションの設定とは、オートキャリブレーション(自動 調節機能)によって実際の入力値や出力値を設定された値となるよう補 正をかけることを意味します。これにより、たとえば出力ユニットの場 合では、0V 出力と設定しても出力部のオペアンプ周囲温度などの条件 により、出力値が0Vにならない場合があっても補正して0V 出力します。

- 5 -

アナログユニットを使用するにあたり、最初にハードウェアの設定を行います。

Copyright 2003 Digital Electronics Corporation. All rights reserved.

ソフトウェア設定

1. Flexnet workに対応した機種を選択します。

(今回はTypeCを選択します)

規作成			
אַעאַב			
無題			UK
機種如7°			キャンセル
ТуреС		-	
Type B/B+		_	
TypeC TypeH TypeA 縦型 TypeB/B+ 縦型 TypeC 縦型 TypeH 縦型		•	
			^ルフ°(<u>H</u>)

 ロジックプログラムの作成を選びます。 (1/0 コンフィグレーションからの設定します)

新規作反	ž	×
	ロシックプログラムの作成	
	画面の作成	
	46 ¹ /11	
	47724	

- 7 -

ソフトウェア設定

3.1/0コンフィグレーションの設定をします。

I/0コンフィグレーションでデフォルトの[FN-X16TS]をダブルクリックすると、I/0ユニット設定画面が表示されます。そこからアナログユニットの型式を選択できます。

アナログユニット

ソフトウェア設定

3.1/0コンフィグレーションの設定をします。

■単純平均

■移動平均

- 9 -

ソフトウェア設定

4.1/0コンフィグレーションの設定をします。

使用するチャンネルに、変数を割り当てます

以上で、I/0コンフィグレーションの設定が完了します。

ラダーによる設定

アナログユニットでは、ハードウェアの設定とI/0コンフィグレーションの設定を行うと、 とりあえずの動作は行います。

アナログ入力の場合、アナログ値が0~4095のデジタル値に変換されて入力されます。 アナログ出力の場合、デジタル値の0~4095がアナログ値に変換されて出力されます。

しかしながら、意味のある数値としてラダー上・画面上で扱うには、ラダーが必要です。

例:タッチパネル上で10と入力して、10Vを出力する。 20mAで入力されてくるアナログ値をラダー上で20と認識する、など。

ここではスケーリング処理をラダーで行います。 それには、下記の一次関数の一般式に従い、ラダーを組みます。

<u>- 次関数の一般式</u> y = ax + b

レンジ0:0~5V入力/出力スケーリング処理

0~5 V入力/出力について、一次関数式 に従い、スケーリング処理をします。

0~5Vの一次関数 y=819x

レンジ1:1~5V入力/出力スケーリング処理

1~5 V入力/出力について、一次関数式 に従い、スケーリング処理をします。

 $1 \sim 5 \vee \mathcal{O}$ - 次関数 y = 1023.75x - 1023.75

レンジ2:0~10V入力/出力スケーリング処理

0~10V入力/出力について、一次関数式に従い、スケーリング処理をします。

0~10Vの一次関数 y = 409.5x

- 14 -

レンジ3:-5V~5V入力/出力スケーリング処理

-5~5V入力/出力について、一次関数式に従い、スケーリング処理をします。

-5~5Vの一次関数 y = 409.5x +2047.5

レンジ4:-10~10V入力/出力スケーリング処理

-10~10V入力/出力について、一次関数式に従い、スケーリング処理をします。

 $-10 \sim 10 \lor \mathcal{O}$ 一次関数 y = 204.75x +2047.5

ログユニット

レンジ5:0~20mA入力/出力スケーリング処理

0~20mA入力/出力について、一次関数式に従い、スケーリング処理をします。

 $0 \sim 20 \text{ m A } \mathcal{O} -$ 次関数 y = 204.75x

- 17 -

レンジ6:4~20mA入力/出力スケーリング処理

0~20mA入力/出力について、一次関数式に従い、スケーリング処理をします。

 $0 \sim 20 \text{ m A} \mathcal{O} - 次関数$ y = 255.9375x - 1023.75

画面作成 画面構成

メニュー画面でレンジを選択して画面を切り替え、レンジごとの画面で入出力します。

<u>LT-typeH</u>

- 19 -

<u>LT-typeH</u>

画面作成 設定値表示器

アナログ出力用の設定値表示器の設定をします。

- 20 -

転送準備

I/0使用可にチェックが入っていることを確認して、転送してください。 [コントローラ] [設定] [I/0使用可]

感日シックフログラムエディター20030901LT特殊アナログユニット		
ファイル(E) 編集(E) 表示(V) 検索(S) 挿入(Φ データ(D)	コントローラ(<u>C</u>) ヘルフ [*] (<u>H</u>)	
	モニタリンクモート ⁱ への移行(<u>M</u>)	80%
	RUN/STOP(S) コントローラからの読み出し(R) コントローラへの書き込み(W) コントローラとの照合(V)	
 システムの設定 メモリ ① コンスタントスキャン(T): 10 京 ms ○ パーセントスキャン(P): 0 京 % WDT設定: 500 京 ms ☑ コントローラの自動スタートを禁止する(D) ▼ 1/0使用可 ■ 継続異常スイッチ(E) 	A HALLE	
OK キャンセル 適用(A) ヘルプ		