GP-PRO/PB PLC 接続マニュアル 補足版

Rockwell(Allen-Bradley) ControlLogix 5000 シリーズ

GP-PRO/PB PLC接続マニュアル補足版の読み方

本補足版は GP-PRO/PB for Windows 機器接続マニュアル(PLC 接続マニュアル)の Rockwell 製 PLC に関する箇所に、ControlLogix 5000 シリーズの内容を追加したものの 抜粋です。

そのためRockwell製PLCの他シリーズに関する項目も含まれています。

ControlLogix 5000シリーズを接続する際には、ControlLogix 5000シリーズに関する項目をお読みください。

なお、PLC接続に関する一般的な説明、マニュアル表記のルールに関しましては、お手元の機器接続マニュアル(PLC接続マニュアル)をご覧ください。

本補足版の内容は、今後機器接続マニュアル(PLC接続マニュアル)に反映される予定です。

インストールについて

CD-ROMに入っている作画・通信用のファイルをパソコンにインストールします。この作業は すでにパソコンに GP 画面作成ソフト(GP-PRO/PB for Windows95 Ver.2.1以上)がインス トールされていることを前提とします(GP画面作成ソフトのインストールについては、各「オ ペレーションマニュアル」参照)。

GP画面作成ソフトがインストールされていることを確認してください。 CD-ROM内のファイル(abcl_df1.exe)をダブルクリックし、起動させてください。 セットアップが始まりますので、指示通りにインストールを行って下さい。

重要 · ControlLogix 5000 シリーズを使用する場合、GP-PRO/PB の PLC タイプから [Allen Bradley Control Logix (DF1)]を選 択します。

2.17 Rockwell (Allen-Bradley) PLC

2.17.1 システム構成

Rockwell (Allen-Bradley) PLCとGPを接続する場合のシステム構成を示します。< <結線図 > は2.17.2 結線図をご参照ください。

SLC500 シリーズ (CPU ユニット上のリンク I/F 使用)

CPU	結線図	GP
	•	
SLC-5/03 SLC-5/04	RS-232C <結線図1>	GPシリーズ

PLC-5シリーズ (リンク I/F 使用)

CPU	リンクI/F	結線図	GP
	ATA IGHWAY LUS	•	
PLC-5シリーズ全 ての機種 (ただし、右記リ	1785-KE 1785-KE/C	RS-232C <結線図2>	
ングユーットと接 続できるものに限 ります)	1770-KF2	RS-232C <結線図3>	GPシリーズ
		RS-422 <結線図4>	

PLC-5シリーズ (CPU 直結)

CPU *1	結線図	GP
	•	
PCL-5/11	RS-232C	
PLC-5/20	<結線図3>	
PLC-5/30		
PLC-5/40		GPシリーズ
PLC-5/40L	RS-422	
PLC-5/60	<結線図5>	
PLC-5/60L		

*1 Channel 0(CH0)に接続します。

ControlLogix 5000 シリーズ (CPU ユニット上のリンク I/F 使用)

CPU	結線図	GP/GLC
		
1756-L1 1756-L1M1 1756-L1M2 1756-L1M3 1756-L55M13 1756-L55M14 1756-L55M15	RS-232C <結線図6>	GPシリーズ *1 GLCシリーズ

*1 対象シリーズはGP-377シリーズ、GP77Rシリーズ、GP2000シリーズ、GLC2000シリーズとなり ます。

2.17.2 結線図

以下に示す結線図とRockwell (Allen-Bradley)の推奨する結線図が異なる場合がありますが、以下に示す結線図でも動作上問題はありません。

- 強制 ・ PLC本体のFG端子は、D種接地を行ってください。
- **重要**・シールド線へのFGの接続は、設置環境によってPLC側、GP側の どちらかを選択してください。
 - ・ RS-232C 接続の場合は、ケーブル長は 15m 以内にしてください。
 - ・ 通信ケーブルを結線する場合は、必ずSGを接続してください。
 - RS-422接続の場合、ケーブル長はRockWellのマニュアルを参照してください。

< 結線図 1 > RS-232C

<結線図2> RS-232C

<結線図3 > RS-232C

<結線図4 > RS-422

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

・(株)デジタル製RS-422 ケーブルGP230-IS11-0を使用する場合

リ、RDA-RDB 間に100 の終端抵抗が挿入されます。

<結線図5 > RS-422

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

・(株) デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合

・ ケーブルを加工する場合

MEMO

GP 側シリアル I / F の 9 番ピンと 10 番ピンを接続することによ リ、RDA-RDB 間に 100 の終端抵抗が挿入されます。

<結線図6 > RS-232C

MEMO · シールド線へのFGの接続は、GP側を接続してください。 · 通信ケーブルを結線する場合は、必ずSGとCOMMONを接続して ください。

2.17.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

SLC500 シリーズ

していたい は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考	
ビット	B0030000 ~ B003255F B0100000 ~ B255255F	B003000 ~ B003255 B010000 ~ B255255		H/L
タイマ(TT:タイミン グビット)	TT0040000 ~ TT0042550 TT0100000 ~ TT2552550		*1	
タイマ (DN:完了ビット)	TN0040000 ~ TN0042550 TN0100000 ~ TN2552550		*1	
タイマ (PRE:設定値)		TP004000 ~ TP004255 TP010000 ~ TP255255	*2	
タイマ (ACC:現在値)		TA004000 ~ TA004255 TA010000 ~ TA255255	*2	
カウンタ(CU:アップ カウント)	CU0050000 ~ CU0052550 CU0100000 ~ CU2552550		*1	L/H
カウンタ(CD:ダウン カウント)	CD0050000 ~ CD0052550 CD0100000 ~ CD2552550		*1	
カウンタ (CN:完了ビット)	CN0050000 ~ CN0052550 CN0100000 ~ CN2552550		*1	
カウンタ (PRE:設定値)		CP005000 ~ CP005255 CP010000 ~ CP255255	*2	
カウンタ (ACC:現在値)		CA005000 ~ CA005255 CA010000 ~ CA255255	*2	
整数		N007000 ~ N007255 N010000 ~ N255255	Bit	H/L

*1 次頁の例 のように、末尾には必ず "0" を入力してください。

*2 2ワード以上の連続したアドレスの読み出し、書き込みを行うと、他のデバイスに比べて読み 出しに時間がかかり、全体的に表示更新速度が遅くなります。

・ファイル番号0~7は、ユーザー用のデフォルトファイルです。 詳細はご利用のPLCのマニュアルをご参照ください。

- PLCのデータテーブルマップに割り付けられていないデバイス を指定すると、上位通信エラー(02:10)が表示されます。
- 入力リレー、出力リレーは、SLC500の仕様上直接読み出し、書き込みはできません。

PLC側で以下の処理を行ってください。

- 読み出し時 入力リレー、出力リレーのデータをラダー プログラムでビットまたは整数に移動し、 ビットまたは整数を読み出してください。 書き込み時 データをビットまたは整数に書き込んでか
- らラダープログラムで入力リレー、出力リ レーに移動してください。

Rockwell (Allen-Bradley) 製 PLC では、各デバイスデータ はエレメントから構成されますが、「GP-PRO/PB 」ではエレメ ントと呼ばれる概念はありません。デバイスを入力するときは、 次に示す例のように入力してください。 <例> PLC での表記 GP-PRO/PB での入力 エレメント指定の場合 エレメントデリミタ <u>N</u> <u>7(:)15</u> <u>N 007 015</u> エレメント - エレメント(10進入力) - ファイル番号 - ファイル番号(10 進入力) - ファイルタイプ - ファイルタイプ ワード指定の場合 エレメントデリミタ , ~ ワードデリミタ $\underline{T} \underline{4} \underbrace{2} \underline{7} \underbrace{ACC}$ <u>TA 004 007</u> 匚 ワード - エレメント – ファイル番号 — エレメント — ファイル番号 - ファイルタイプ - ファイルタイプ ビット指定の場合 エレメントデリミタ ビットデリミタ <u>B</u> <u>3(:)64(/)15</u> <u>B 003 064 F</u> └ ビット ____ ビット(16 進入力) — エレメント — エレメント 一 ファイル番号 — ファイル番号 ― ファイルタイプ — ファイルタイプ エレメントデリミタ ノビットデリミタ T 4(:)7(/)TT <u>TT 004 007 0</u> └必ず0を入力 - ビット – エレメント - エレメント – ファイル番号 - ファイル番号 - ファイルタイプ - ファイルタイプ

PLC-5シリーズ

			は、システムエリアに	指定可
デバイス	ビットアドレス	ワードアドレス	備考	
入力リレー	100000 ~ 127717	1000 ~ 1277	÷ 8]	H/L
出力リレー	000000 ~ 027717	0000 ~ 0277	÷ 8)	
内部リレー	B300000 ~ B6799915	B3000 ~ B67999		
タイマ(TT:タイミン グビット)	TT3000 ~ TT67999			L/H
タイマ (TD:完了ビット)	TD3000 ~ TD67999			
カウンタ (CC:カウント)	CC3000 ~ CC67999			
カウンタ (CD:完了ビット)	CD3000 ~ CD67999			
タイマ (ACC:現在値)		TA3000 ~ TA67999		
タイマ (PRE:設定値)		TP3000 ~ TP67999		
カウンタ (ACC:現在値)		CA3000 ~ CA67999		
カウンタ (PRE:設定値)		CP3000 ~ CP67999		
データレジスタ Integer		N3000 ~ N67999	<u>віt</u> 15	
データレジスタBCD		D3000 ~ D67999	<u>віt</u> 15	H/L
データレジスタASCII		A3000 ~ A67999	в і t 15	1

ControlLogix 5000 シリーズ

_____ は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
Bit (BOOL)	B00L00000000 ~ B00L99999931	B00L000000 ~ B00L999999	*1*3
8 bit integer (SINT)		SINT000000 ~ SINT999998	<u>₿ i t</u> 7) ÷ 2]*1
16 bit integer (INT)		INT000000 ~ INT999999	<u>ві 1</u> 5 *1
32 bit integer (DINT)		DINT000000 ~ DINT999999	<u>₿;</u> 31 *1
32 bit float (REAL)		REAL000000 ~ REAL999999	*1*2 H/L

*1 GP シリーズで ControlLogix 5000 シリーズのデータメモリにアクセスする場合、データメモ リを配列要素として割り付ける必要があります。配列要素の設定は、File numberとElement number で構成されます。したがって GP-PRO/PB for Windows では次のようにアドレスを指 定します。

> INT $\underline{123}$ $\underline{100}$ \Box Element number(0 ~ 999)

> > —— File number(0 ~ 999)

- *2 Float デバイスです。Float デバイスを使用する場合、E タグ、K タグの 32 ビット Float 設定の み使用できます。
- *3 GP-PRO/PB とPLCのマニュアルではBOOLデバイスの表記方法が異なります。BOOLデバイスの 設定時にはご注意ください。

表記の例

GP-PRO/PB の表記	000000 00~ 000000 31	000001 00~ 000001 31	000002 00~ 000002 31	2	000999 00~ 000999 31
RSLogix 5000の表記	0~31	32 ~ 63	64 ~ 95	1	31968 ~ 31999

重要 GP から PLC のデバイスにアクセスする場合、あらかじめ PLC 側 でPLCのデータメモリであるTagをデバイスメモリとして使用す るためにデバイスの割り付けを行っておく必要があります。デバ イスの割り付けはRockwell製ラダーソフトウェアRSLogix 5000 で行います。

> 割り付けていない場合は、GP上に上位通信エラー(02:D6)が表示 されます。参照 2.17.5 エラーコード

< デバイスの設定例 >

ControlLogix 5000シリーズでのデバイスの割り付けは次の手順で行います。

1) PLC の Tag の設定

Tag Name と Type を設定します。

・Tag Name :任意に設定します。(GPのデバイス名とは関係ありません。)

• Type

:次の中からデータタイプを選択し、配列要素数(Element)を設定します。 (GPのデバイス名と合わせます。)

BOOL(32bit data type) INT(word data type) DINT(dword data type) SINT(byte data type) REAL(float data type)

<例1>

Tag Name	Туре
N7	INT[200]
DINT1	DINT[100]
DATA2	SINT[50]

例1の内容は次のとおりです。

1 行目: Tag Name"N7" は INT データタイプで配列要素数 200

2行目: Tag Name"DINT1"は、DINTデータタイプで配列要素数100

3行目: Tag Name "DATA2" は、SINT データタイプで配列要素数50

設定する配列要素数は、GPで使用する範囲を設定してください。

(GPがアクセスできる最大 Element サイズは 999 です。)

また、配列要素数を指定しない場合は、1点のみ使用可能となります。

(例) Tag Name: N8、Type: INT と設定した場合、N8 は1 ワードのみ使用できます。

2)マッピングの設定

1) で設定した Tag Name を任意の File Number に割り付けます。

異なる Tag Name を同じ File Number に設定することはできません。

<例2>

File Number	Tag Name
2	DATA2
1	DINT1
7	N7

以上で GP から PLC のデバイスをアクセスすることができます。例1と例2の設定で指定できるアドレスは次のようになります。

• INT007000 ~ INT007199

• DINT001000 ~ DINT001099

• SINT002000 ~ SINT002049

< GP と PLC のアドレスマップ例 >

2-17-12

2.17.4 環境設定例

(株)デジタルが推奨する PLC 側の通信設定と、それに対応する GP 側の通信設定を示します。

SLC500 シリーズ

GPの設定		PLC側の設定	
伝送速度	19200bps	Baud Rate	19200bps
データ長	8bits		
ストップビット	1bit		
パリティビット	偶数	Parity	EVEN
制御方式	ER制御		
通信方式	RS-232C		
		Communication Driver	DF1 HALF-DUPLEX SLAVE *1
		Duplicate Packet DISABLE *1 Detection	
		Error Detection	BCC *1
		Control Line	NO HANDSHAKING *1
号機No.(DH GP) ^{*2}	0	Station Address *2	0

*1 これ以外の設定では動作しません。

*2 Station Address と GP の DH GP アドレスを同じ値(アドレスは 10 進数です)に設定してくだ さい。DH PLC アドレスは設定する必要はありません。 参照 DH アドレスの設定方法

PLC-5シリーズ

GPの	GPの設定 CPU(CHO)、178		35-KE、1770-KF2
伝送速度	19200bps	Baud Rate	19200bps
データ長	8bit(固定)	Data length	8bit(固定)
ストップビット	1bit(固定)	Stop bit	1bit(固定)
パリティビット	偶数	Parity bit	EVEN
制御方式	ER制御		
通信方式 (RS-232C使用時)	RS-232C	RS-232C/422A Selec- tion(RS-232C使用時)	RS-232C
通信方式 (RS-422使用時)	4線式	RS-232C/422A Selec- tion(RS-422使用時)	RS-422A
		Comm. protocol	Half duplex(CHOの 場合はDF1 Slave) ^{*1}
		Duplicate Detect	OFF ^{*1}
		Error check	BCC *1
		Control Line	NO HANDSHAKING *1
		Other CHO parammeters	50
		DF1 retries	3
		Diag file	0(未使用ファイル)
		RTS send delay	0
		RTS off delay	0
		Network link *2	Data highway plus
号機No.(DH GP) ³	0	Station Address *4 *5 (1785-KE, 1770-KF2側)	0
号機No.(DH PLC) ^{*3}	1	Station Address ^{*4} (CPU側)	1

*1 これ以外の設定では動作しません。

*2 KF2の設定です。

*3 DH GPは1785-KE、1770-KF2のStation Addressと合わせてください。DH PLCはCPUのStation Addressと合わせてください。1785-KE、1770-KF2使用の場合、DH GPとDH PLCのアドレス は異なる No. を設定してください。CPU 直結の場合、DH GPとDH PLC アドレスは同じNo. を 設定してください。DH アドレス(DH GP、DH PLC)はGP オフラインモードの初期設定「動作 環境の設定」で設定します。10進数で設定してください。

参照 DH アドレスの設定方法

*4 プログラミング機器を使用する場合は、Terminal Address(プログラミング機器のアドレス) とStation Address が重ならないようにしてください。

*5 CPU 直結の場合、この設定はありません。

CHO を使用するときは、CPU を「Slave」の設定にしてください。(「Point to Point」の設定にしないでください)

DH アドレスの設定方法 GPのオフラインモードで初期設定時に「動作環境の設定」を行ってください。

各 DH アドレスの設定を行ってください。

動作環境の設定			設定終了	取り消し
システムエリア	先頭ファイル	[]	
	先頭アドレス	[]	
DH アドレス(1 0	進) GP	[]	
	PLC	[]	
システムエリア 割	読みエリアサイズ (0-256)	[]	
DH アドレス(1 0) システムエリア 割	進) GP PLC 込みエリアサイズ (0-256)	ם ב ב]]	

GPの設定		PLC側の設定		
通信速度(bps)	19200 bps	Baud Rate ^{*1}	19200 bps	
データ長	8 bit	Data Bits ^{*1}	8 bit	
ストップビット	1 bit	Stop Bit ^{*1}	1 bit	
パリティビット	偶数	Parity ^{*1}	Even	
制御方式	ER			
通信方式	RS-232C			
号機No.	0	Station Address *2	0	
		Mode ^{*1}	System	
		Control Line ^{*1}	No Handshake	
		RTS Send Delay \star1	0	
		RTS Off Delay ^{*1}	0	
		Protocol ^{*2}	DF1 Slave	
		Transmit Retries ^{*2}	3	
		Slave Poll Timeout *2	3000	
		EOT Suppression *2	No Check	
		Error Detection *2	BCC	
		Enable Duplicate Detection ^{*2}	No Check (Disable)	

ControlLogix 5000 シリーズ

*1 Rockwell 製ラダーソフトウェア RSLogix 5000 の [Serial Port] メニューで設定します。

*2 Rockwell 製ラダーソフトウェア RSLogix 5000の[System Protocol] メニューで設定します。

2.17.5 エラーコード

PLC 特有のエラーコード PLC のエラーコードは GP の画面左下に「上位通信エラー(02:**)」のように表示されます。 (** は PLC 特有のエラーコード)

PLC のエラーコードには STS エラーコードと EXT STS エラーコードの 2 種類があ ります。

EXT STSエラーコードはSTSエラーコードと重ならないようにエラーコードに0xD0 の値を加算しています。したがって0xCF以下のエラーコードはSTSエラーコード になります。

<例>

上位通信エラー(02:D2)の場合、EXT STS エラーコードの 0x02 となります。 上位通信エラー(02:C0)の場合、STS エラーコードの 0xC0 となります。

連続アドレスの読み出し時の最大データ数を示します。ブロック転送を利用される場合に、ご参照ください。

< ControlLogix 5000 シリーズ (CPU ユニット上のリンク I/F 使用) >

デバイス	連続アドレス 最大データ数
Bit (BOOL)	
8 bit integer (SINT)	
16 bit integer (INT)	122ワード
32 bit integer (DINT)	
32 bit float (REAL)	

付録 2 デバイスコードとアドレスコード

下記のデバイスコードとアドレスコードは、E タグまたはK タグの間接アドレス指定時に使用します。

< ControlLogix 5000 シリーズ (CPU ユニット上のリンク I/F 使用) >

	デバイス	ワードアドレス	デバイスコード	アドレスコード	
ビッ		B00L000000 ~	8000		
		B00L065000~	8200		
		B00L130000~	8400		
		B00L195000~	8600		
		B00L260000~	8800		
		B00L325000~	8A00		
Ļ		B00L390000~	8C00		
r デバイス	Pi+(POOL)	B00L455000~	8E00	ダブルロードマドレフ	
	BIL (BOOL)	B00L520000~	9000	97/09-19102	
		B00L585000~	9200		
		B00L650000~	9400		
		B00L715000~	9600		
		B00L780000~	9800		
		B00L845000~	9A00		
		B00L910000~	9000		
		B00L975000~	9E00		
	8 bit integer (SINT)	SINT000000 ~	4C00		
		SINT100000 ~	4E00		
ラードデバイス		SINT200000 ~	5000		
		SINT300000 ~	5200		
		SINT400000 ~	8400	ロードアドレス	
		SINT500000 ~	5600		
		SINT600000 ~	5800		
		SINT700000 ~	5A00		
		SINT800000 ~	5C00		
		SINT900000 ~	5E00		

	デバイス	ワードアドレス	デバイスコード	アドレスコード	
		INT000000 ~	0000		
		INT065000~	0200		
		INT130000~	0400		
		INT195000~	0600		
		INT260000~	0800		
		INT325000~	0A00		
		INT390000~	0000		
	16 bit integer (INT)	INT455000~	0E00	ワードアドレス	
		INT520000~	1000		
		INT585000~	1200		
		INT650000~	1400		
		INT715000~	1600		
		INT780000~	1800		
		INT845000~	1A00		
		INT910000~	1C00		
		INT975000 ~	1E00		
		DINT000000~	2000		
		DINT065000~	2200		
		DINT130000~	2400		
		DINT195000~	2600		
		DINT260000~	2800		
ワ	32 bit integer (DINT)	DINT325000~	2A00		
1		DINT390000~	2C00		
ド		DINT455000~	2E00	ガゴルロ ドマドレフ	
デ		DINT520000~	3000	97779-77772	
バ		DINT585000~	3200		
イ		DINT650000~	3400		
ス		DINT715000~	3600		
		DINT780000~	3800		
		DINT845000~	3A00		
		DINT910000~	3C00		
		DINT975000~	3E00		
	32 bit float (REAL)	REAL000000 ~	6000		
		REAL065000 ~	6200		
		REAL130000 ~	6400		
		REAL195000 ~	6600		
		REAL260000 ~	6800		
		REAL325000 ~	6A00		
		REAL390000 ~	6C00		
		REAL455000 ~	6E00	ダブルワードアドレフ	
		REAL520000 ~	7000		
		REAL585000 ~	7200		
		REAL650000 ~	7400		
		REAL715000 ~	7600		
		REAL780000~	7800		
		REAL845000 ~	7A00		
		REAL910000~	7000		
		REAL975000 ~	7E00		
	LSエリア (LS)	LS0000 ~	4000	ワードアドレス	